摘要/Abstract
摘要: 褪黑素是一种广泛存在于植物体内的小分子吲哚胺类激素,现有研究已明确其合成途径、分解代谢和生理功能。褪黑素作为信号分子可调节植物昼夜节律、种子萌发、根和花发育,还有利于增强植物对各种逆境胁迫的抵御能力。本文总结了褪黑素调控草类植物生长发育的生理功能,重点阐述了褪黑素在草类植物非生物胁迫和生物胁迫响应中的调控作用,并对其在草类植物生长发育与抗逆性功能研究以及在抗逆育种中的应用前景进行了展望,以期为利用褪黑素提高草类植物抗逆性、提升牧草产量和品质提供参考依据。
关键词:
褪黑素,
草类植物,
生长发育,
非生物胁迫,
生物胁迫,
调控作用
Abstract: Melatonin is a small molecule indolamine hormone that widely exists in plants,and the studies have already clarified its synthetic pathway,catabolism and physiological functions. Melatonin can act as a signaling molecule to regulate plant circadian rhythms,seed germination,root and flower development,and also help to enhance the resistance of plants to various stresses. In this paper,the physiological functions of melatonin in regulating growth and development of herbaceous plants were summarized up,and its regulatory effects in response to abiotic and biotic stresses were particularly focused on. Additionally,functional study on melatonin in growth,development and stress resistance,as well as its application in stress resistance breeding in forage species were prospected. This review is expected to provide insight into improving the stress resistance,yield and quality enhancement of forage plants by using melatonin.
Key words:
Melatonin,
Herbaceous plants,
Growth and development,
Abiotic stress,
Biotic stress,
Regulatory effects
中图分类号:
Q945.79
引用本文
张昭, 聂宇婷, 崔凯伦, 吕艳贞, 闫慧芳. 褪黑素调控草类植物生长发育及抗逆性功能研究进展[J]. 草地学报, 2023, 31(9): 2571-2581.
ZHANG Zhao, NIE Yu-ting, CUI Kai-lun, LYU Yan-zhen, YAN Hui-fang. Research Progress on the Function of Melatonin in Regulating Growth, Development and Stress Resistance in Herbaceous Species[J]. Acta Agrestia Sinica, 2023, 31(9): 2571-2581.
使用本文
/
推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文:
https://manu40.magtech.com.cn/Jweb_cdxb/CN/10.11733/j.issn.1007-0435.2023.09.001
https://manu40.magtech.com.cn/Jweb_cdxb/CN/Y2023/V31/I9/2571
参考文献
[1] AFREEN F,ZOBAYED S M A,KOZAI T. Melatonin in Glycyrrhiza uralensis:response of plant roots to spectral quality of light and UV-B radiation[J]. Journal of Pineal Research,2006,41(2):108-115[2] KHAN T A,FARIDUDDIN Q,NAZIR F,et al. Melatonin in business with abiotic stresses in plants[J]. Physiology and Molecular Biology of Plants,2020,26(10):1931-1944[3] 施雨. 褪黑素对盐胁迫下紫花苜蓿种子萌发及幼苗生长生理特性的影响[D]. 扬州:扬州大学,2022:13-62[4] YANG X X,CHEN J,MA Y,et al. Function,mechanism,and application of plant melatonin:An update with a focus on the cereal crop,barley (Hordeum vulgare L.)[J]. Antioxidants,2022,11(4):634[5] WANG W Q,LIU S J,SONG S Q,et al. Proteomics of seed development,desiccation tolerance,germination and vigor[J]. Plant Physiology and Biochemistry,2015,86:1-15[6] POSMYK M M,KURAN H,MARCINIAK K,et al. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations[J]. Journal of Pineal Research,2008,45(1):24-31[7] 肖珍珍,隋晓青,石国庆,等. 外源褪黑素不同浸种浓度和时长对干旱胁迫下无芒雀麦种子萌发的影响[J]. 草地学报,2022,30(3):655-660[8] 孙铭,王思琪,艾尔肯·达吾提,等. 抗氧化剂引发对无芒雀麦老化种子发芽及幼苗生长的影响[J]. 草业学报,2019,28(11):105-113[9] 熊毅,熊艳丽,杨晓鹏,等. 外源褪黑素对盐胁迫下老化燕麦种子萌发及幼苗的影响[J]. 中国草地学报,2020,42(1):7-14[10] YAN H,JIA S,MAO P. Melatonin priming alleviates aging-induced germination inhibition by regulating β-oxidation,protein translation,and antioxidant metabolism in oat (Avena sativa L.) seeds[J]. International Journal of Molecular Sciences,2020,21(5):1898[11] YAN H,MAO P. Comparative time-course physiological responses and proteomic analysis of melatonin priming on promoting germination in aged oat (Avena sativa L.) seeds[J]. International Journal of Molecular Sciences,2021,22(2):811[12] ARNAO M B,HERNÁNDEZ-RUIZ J. Melatonin:plant growth regulator and/or biostimulator during stress?[J]. Trends in Plant Science,2014,19(12):789-797[13] ARNAO M B,HERNÁNDEZ-RUIZ J. Melatonin:a new plant hormone and/or a plant master regulator?[J]. Trends in Plant Science,2019,24(1):38-48[14] YANG L,YOU J,LI J,et al. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner[J]. Journal of Experimental Botany,2021,72(15):5599-5611[15] WANG Q,AN B,WEI Y,et al. Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis[J]. Frontiers in Plant Science,2016,7:1882[16] YANG L,SUN Q,WANG Y,et al. Global transcriptomic network of melatonin regulated root growth in Arabidopsis[J]. Gene,2021,764:145082[17] KOYAMA F C,CARVALHO T L,ALVES E,et al. The structurally related auxin and melatonin tryptophan-derivatives and their roles in Arabidopsis thaliana and in the human malaria parasite Plasmodium falciparum[J]. The Journal of Eukaryotic Microbiology,2013,60(6):646-651[18] ARNAO M B,HERNÁNDEZ-RUIZ J. Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L.[J]. Journal of Pineal Research,2007,42(2):147-152[19] KOLÁR J,MACHÁCKOVÁ I. Melatonin in higher plants:occurrence and possible functions[J]. Journal of Pineal Research,2005,39(4):333-341[20] 周玉堂,李拥军. 植物叶片衰老的研究综述[J]. 湖北工程学院学报,2016,36(3):55-59[21] SHI H,REITER R J,TAN D X,et al. INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis[J]. Journal of Pineal Research,2015,58(1):26-33[22] ARNAO M B,HERNÁNDEZ-RUIZ J. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves[J]. Journal of Pineal Research,2009,46(1):58-63[23] ZHANG J,LI H,XU B,et al. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.)[J]. Frontiers in Plant Science,2016,7:1500[24] SRIKANTH A,SCHMID M. Regulation of flowering time:all roads lead to Rome[J]. Cellular and Molecular Life Sciences,2011,68(12):2013-2037[25] ZHANG Z,HU Q,LIU Y,et al. Strigolactone represses the synthesis of melatonin,thereby inducing floral transition in Arabidopsis thaliana in an FLC-dependent manner[J]. Journal of Pineal Research,2019,67(2):e12582[26] SHI H,WEI Y,WANG Q,et al. Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis[J]. Journal of Pineal Research,2016,60(3):373-379[27] LEE H Y,LEE K,BACK K. Knockout of Arabidopsis serotonin N-acetyltransferase-2 reduces melatonin levels and delays flowering[J]. Biomolecules,2019,9(11):712[28] KOLÁR J,JOHNSON C H,MACHÁČKOVÁ I. Exogenously applied melatonin affects flowering of the short-day plant Chenopodium rubrum[J]. Physiologia Plantarum,2003,118(4):605-612[29] MANCHESTER L C,COTO-MONTES A,BOGA J A,et al. Melatonin:an ancient molecule that makes oxygen metabolically tolerable[J]. Journal of Pineal Research,2015,59(4):403-419[30] 尉欣荣,张智伟,周雨,等. 褪黑素对低温和干旱胁迫下多年生黑麦草幼苗生长和抗氧化系统的调节作用[J]. 草地学报,2020,28(5):1337-1345[31] IRSHAD A. 盐和温度胁迫下外源褪黑素和根瘤对苜蓿(Medicago truncatula)生长的影响[D]. 杨凌:西北农林科技大学,2021:13-74[32] FAN J,HU Z,XIE Y,et al. Alleviation of cold damage to photosystem II and metabolisms by melatonin in bermudagrass[J]. Frontiers in Plant Science,2015,6:925[33] LOBELL D B,ASNER G P. Climate and management contributions to recent trends in U.S. agricultural yields[J]. Science,2003,299(5609):1032[34] LARKINDALE J,HUANG B. Thermotolerance and antioxidant systems in Agrostis stolonifera:involvement of salicylic acid,abscisic acid,calcium,hydrogen peroxide,and ethylene[J]. Journal of Plant Physiology,2004,161(4):405-413[35] LARKINDALE J,HUANG B. Effects of abscisic acid,salicylic acid,ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass[J]. Plant Growth Regulation,2005,47(1):17-28[36] ZHANG J,SHI Y,ZHANG X Z,et al. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.)[J]. Environmental and Experimental Botany,2017,138:36-45[37] MEREWITZ E B,LIU S. Improvement in heat tolerance of creeping bentgrass with melatonin,rutin,and silicon[J]. Journal of the American Society for Horticultural Science,2019,144(2):141-148[38] ALAM M N,ZHANG L,YANG L,et al. Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 2,4-epibrassinolide[J]. BMC Genomics,2018,19(1):224[39] 曹新龙. 干旱胁迫下紫花苜蓿对外源褪黑素的生理响应[D]. 杨凌:西北农林科技大学,2020:14-50[40] 刘文婷. 3种外源植物激素对苇状羊茅苗期耐旱性的影响[D]. 兰州:兰州大学,2021:11-62[41] 佟莉蓉,倪顺刚,任星远,等. 褪黑素对干旱胁迫下达乌里胡枝子幼苗生长及叶片水分生理的影响[J]. 草地学报,2021,29(8):1682-1688[42] 王慧,王冬梅,张泽洲,等. 外源褪黑素对干旱胁迫下黑麦草和苜蓿抗氧化能力及养分吸收的影响[J]. 应用生态学报,2022,33(5):1311-1319[43] ANTONIOU C,CHATZIMICHAIL G,XENOFONTOS R,et al. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism[J]. Journal of Pineal Research,2017,62(4):e12401[44] 李本峰,杜红梅. 褪黑素浸种对多年生黑麦草种子发芽和幼苗生长的初步研究[J]. 上海交通大学学报(农业科学版),2018,36(4):30-34,40[45] 周认,蔡宇,林恬逸,等. 模拟干旱胁迫下褪黑素和表油菜素内酯对沟叶结缕草长期继代培养愈伤组织再生的影响[J]. 浙江大学学报(农业与生命科学版),2022,48(1):36-44[46] 梁甜甜,张艳军,李燕,等. 褪黑素缓解植物涝渍胁迫的生理和分子机制[J]. 植物生理学报,2022:1-21[47] ZHANG Q,LIU X,ZHANG Z,et al. Melatonin improved waterlogging tolerance in alfalfa (Medicago sativa) by reprogramming polyamine and ethylene metabolism[J]. Frontiers in Plant Science,2019,10:44[48] ZENG N,YANG Z,ZHANG Z,et al. Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa (Medicago sativa) response to waterlogging stress[J]. International Journal of Molecular Sciences,2019,20(6):1359[49] ABBASI H,JAMIL M,HAQ A,et al. Salt stress manifestation on plants,mechanism of salt tolerance and potassium role in alleviating it:a review[J]. Zemdirbyste-Agriculture,2016,103(2):229-238[50] 黎力乙,高原千惠,邢鏻木等.褪黑素浸种对盐分胁迫下紫花苜蓿种子萌发的影响[J/OL]. http://kns.cnki.net/kcms/detail/46.1068.S.20220524.1440.007.html,2022-05-24/2023-02-09[51] 崔雪雯. 紫花苜蓿的耐盐性鉴定及褪黑素对盐胁迫的缓解效应[D]. 杨凌:西北农林科技大学,2021:10-60[52] 赵丽娟,麻冬梅,王文静,等. 外源褪黑素对盐胁迫下紫花苜蓿幼苗抗氧化能力以及光合作用效率的影响[J]. 西北植物学报,2021,41(8):1355-1363[53] 熊艳丽,熊毅,赵文达,等. 外源褪黑素对NaCl胁迫下扁穗雀麦种子萌发及幼苗的影响[J]. 草业科学,2019,36(8):2042-2049[54] 左田田. 褪黑素对盐胁迫下紫花苜蓿种子萌发和幼苗生长的影响及其机制研究[D]. 呼和浩特:内蒙古大学,2019:16-31[55] ZHANG K,CUI H,CAO S,et al. Overexpression of CrCOMT from Carex rigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana[J]. Plant Cell Reports,2019,38(12):1501-1514[56] HUANG Y H,LIU S J,YUAN S,et al. Overexpression of ovine AANAT and HIOMT genes in switchgrass leads to improved growth performance and salt-tolerance[J]. Scientific Reports,2017,7(1):12212[57] 刘德帅,姚磊,徐伟荣,等. 褪黑素参与植物抗逆功能研究进展[J]. 植物学报,2022,57(1):111-126[58] LIMSON J,NYOKONG T,DAYA S. The interaction of melatonin and its precursors with aluminium,cadmium,copper,iron,lead,and zinc:an adsorptive voltammetric study[J]. Journal of Pineal Research,1998,24(1):15-21[59] GU Q,CHEN Z,YU X,et al. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis[J]. Plant Science,2017,261:28-37[60] 钟霞飞. 镉胁迫对多年生黑麦草的生理影响及外源褪黑素的缓解效应[D]. 成都:四川农业大学,2018:10-38[61] XIE C,PU S,XIONG X,et al. Melatonin-assisted phytoremediation of Pb-contaminated soil using bermudagrass[J]. Environmental Science and Pollution Research,2021,28(32):44374-44388[62] 陈舒雨. 外源褪黑素对铅胁迫下狗牙根萌发及幼苗生长的影响[D]. 成都:四川农业大学,2019:14-52[63] 贺芳芳,陈慧泽,冯金林,等. 拟南芥黏连蛋白RAD21对增强UV-B辐射后细胞分裂的响应[J]. 植物学报,2020,55(4):407-420[64] 王英利,王英娟,郝建国,等. 褪黑素对绿豆在增强UV-B辐射下的防护作用[J]. 光子学报,2009,38(10):2629-2633[65] ZHANG L J,JIA J F,XU Y,et al. Production of transgenic Nicotiana sylvestris plants expressing melatonin synthetase genes and their effect on UV-B-induced DNA damage[J]. In Vitro Cellular and Developmental Biology-Plant,2012,48(3):275-282[66] YAO J W,MA Z,MA Y Q,et al. Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana[J]. Plant,Cell and Environment,2021,44(1):114-129[67] ARNAO M B,HERNÁNDEZ-RUIZ J. Functions of melatonin in plants:a review[J]. Journal of Pineal Research,2015,59(2):133-150[68] GALANO A,TAN D X,REITER R J. Melatonin as a natural ally against oxidative stress:a physicochemical examination[J]. Journal of Pineal Research,2011,51(1):1-16[69] BYCHKOV I,KUDRYAKOVA N,ANDREEVA A,et al. Melatonin modifies the expression of the genes for nuclear- and plastid-encoded chloroplast proteins in detached Arabidopsis leaves exposed to photooxidative stress[J]. Plant Physiology and Biochemistry,2019,144:404-412[70] WANG P,SUN X,WANG N,et al. Melatonin enhances the occurrence of autophagy induced by oxidative stress in Arabidopsis seedlings[J]. Journal of Pineal Research,2015,58(4):479-489[71] CEN H,WANG T,LIU H,et al. Melatonin application improves salt tolerance of alfalfa (Medicago sativa L.) by enhancing antioxidant capacity[J]. Plants,2020,9(2):220[72] WIESNER-HANKS T,NELSON R. Multiple disease resistance in plants[J]. Annual Review of Phytopathology,2016,54:229-252[73] ZHAO D,YU Y,SHEN Y,et al. Melatonin synthesis and function:evolutionary history in animals and plants[J]. Frontiers in Endocrinology,2019,10:249[74] MOUSTAFA-FARAG M,ALMONEAFY A,MAHMOUD A,et al. Melatonin and its protective role against biotic stress impacts on plants[J]. Biomolecules,2019,10(1):54[75] 郭苗杰. 褪黑素在丁香假单胞杆菌侵染拟南芥的抗菌功能研究[D]. 西安:西北大学,2022:15-18[76] LEE H Y,BACK K. Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana[J]. Journal of Pineal Research,2017,62(2):e12379[77] DAVID L,HARMON A C,CHEN S. Plant immune responses from guard cells and local responses to systemic defense against bacterial pathogens[J]. Plant Signaling and Behavior,2019,14(5):e1588667[78] DOEHLEMANN G,ÖKMEN B,ZHU W,et al. Plant pathogenic fungi[J]. Microbiology Spectrum,2017,5(1):FUNK-0023-2016[79] 祝颖. 内源褪黑素在病原菌侵染拟南芥过程中的功能研究[D]. 西安:西北大学,2020:10-53[80] 常斐斐,曹曦跃,彭婕,等. 褪黑素诱导拟南芥抗芸薹根肿菌[J]. 应用与环境生物学报,2018,24(1):75-80[81] SCHOLTHOF K B,ADKINS S,CZOSNEK H,et al. Top 10 plant viruses in molecular plant pathology[J]. Molecular Plant Pathology,2011,12(9):938-954[82] SOFY A R,SOFY M R,HMED A A,et al. Molecular characterization of the alfalfa mosaic virus infecting Solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid[J]. Plants,2021,10(3):459[83] LU R,LIU Z,SHAO Y,et al. Melatonin is responsible for rice resistance to rice stripe virus infection through a nitric oxide-dependent pathway[J]. Virology Journal,2019,16(1):141
相关文章 15
[1]
焦芳菊, 郝晓佳, 王晶艺, 边建文, 王子铭, 陈明飞, 文钧民, 王芳. 外源褪黑素、吲哚丁酸钾、γ-氨基丁酸引发对老化玉米种子萌发及生理特性的影响[J]. 草地学报, 2025, 33(8): 2494-2501.
[2]
陈彩锦, 马琳, 包明芳, 蒋庆雪, 张国辉, 张尚沛, 高婷, 刘文辉, 王学敏. WRKY基因家族在植物中的研究进展[J]. 草地学报, 2025, 33(7): 2059-2069.
[3]
高雅晴, 石文敏, 张永康, 孙婉玉, 朱龙韬, 殷旭, 席杰军. 蒺藜苜蓿共生固氮突变体esn1的表型鉴定研究[J]. 草地学报, 2025, 33(2): 327-334.
[4]
罗李旋, 周涛, 徐倩, 卢蕊, 刘宁芳, 胡龙兴. 美洲狼尾草GATA转录因子家族生物信息学分析[J]. 草地学报, 2025, 33(2): 391-400.
[5]
邹苇鹏, 翟佳兴, 李迪娜, 黄洁琼, 郭康杰, 岑慧芳, 朱慧森, 许涛. 紫花苜蓿NAC基因家族鉴定及在非生物胁迫下的表达模式分析[J]. 草地学报, 2024, 32(8): 2440-2458.
[6]
黄洁琼, 翟佳兴, 王颖, 岑慧芳, 朱慧森, 许涛, 夏方山. 褪黑素对干旱胁迫下紫花苜蓿种子萌发及幼苗生理特性的影响[J]. 草地学报, 2024, 32(8): 2575-2583.
[7]
余明君, 苏丹丹, 苏旭, 陈金元, 刘玉萍, 张雨, 刘涛, 杨倩, 牛富英. 非生物胁迫下黄缨菊实时荧光定量PCR内参基因的筛选与验证[J]. 草地学报, 2024, 32(7): 2028-2038.
[8]
刘婧禹, 赵海君, 欧成明, 贾志程, 毛培胜. 褪黑素引发对Na2SO4胁迫下紫花苜蓿种子发芽特性的影响[J]. 草地学报, 2024, 32(2): 378-385.
[9]
李启娇, 崔东毅, 段新慧, 刘莉, 许文花, 李庆玺, 郑立文, 任健, 朱丽敏, 马向丽. 褪黑素浸种对铝胁迫下苜蓿种子萌发及幼苗抗氧化生理的影响[J]. 草地学报, 2024, 32(2): 535-542.
[10]
李小红, 王晓彤, 麻旭霞, 蔡文祺, 冯学丽, 马梦凡, 李淑霞. 紫花苜蓿CNGC基因家族成员鉴定及分析[J]. 草地学报, 2024, 32(2): 588-598.
[11]
李庆玺, 段新慧, 赵志丽, 崔东毅, 杨军, 张睿, 赵红梅, 马向丽. 铅污染下草类植物的生理响应和富集特性研究进展[J]. 草地学报, 2024, 32(12): 3670-3679.
[12]
刘沂欣, 王鑫尧, 隋晓青, 李培英, 张前兵, 徐博. 盐胁迫下外源褪黑素对苜蓿生理特性及细胞超微结构的影响[J]. 草地学报, 2024, 32(12): 3743-3751.
[13]
吴瑞, 刘文辉, 梁国玲, 刘凯强, 琚泽亮. 燕麦AsGRAS36基因的克隆与表达分析[J]. 草地学报, 2024, 32(11): 3371-3382.
[14]
李艳容, 武俊喜, 杨培志, 张雄鹰, 麻仕海, 何红强. 短期缺氮对西藏荨麻幼苗生长发育及生理特性的影响[J]. 草地学报, 2024, 32(11): 3499-3506.
[15]
陈阳, 黄小芹, 尤学, 于浩然, 刘殿辉, 赵清峰, 金一锋. 草地早熟禾转录因子PpMYB44基因克隆及非生物胁迫响应分析[J]. 草地学报, 2024, 32(10): 3062-3070.
编辑推荐
Metrics
阅读次数
全文
摘要
本文评价